JOURNAL OF COMPUTATIONAL PHYSICS 109, 193-201 (1993)

Studies of Plasma Equilibrium and Transport in a Tokamak
Fusion Device with the Inverse-Variable Technique

R. R. KHAYRUTDINOV*

Institute for Fusion Studies, The University of Texas ar Austin, Austin, Texas 78712

AND

V. E. LukasH

I. V. Kurchatev Institute of Atomic Energy, Moscow, Russin

_Received January 18, 1991; revised February 8, 1993

We describe an accurate and efficient model for studying the evolu-
tion of tokamak plasmas. The equilibrium probiem for a plasma with a
free boundary is solved using the “inverse variable” technique. The
one-dimensional {averaged on magnetic surfaces) system of transport
equations are solved together with the circuit equations for the vacoum
vessel and the passive and active coils. As an example of the application
of this method, we simulate the discharge in the T-3M tokamak as it
transiently evolves to a separatrix configuration.  © 1993 Academic Press. Inc,

L INTRODUCTION

A vertically elongated plasma cross section is considered
to be advantageous for achieving high-beta and high-
current plasmas in tokamak devices. Tokamaks with diver-
tor configurations and shaped, noncircular plasma cross
sections play an increasingly more important role in fusion
research than conventional circular cross section tokamaks.
Present-day tokamaks like JET, JT-60, and DII-D operate
in divertor regimes. The next generation of tokamaks, like
ITER, are being designed as devices with high clongation.

These tokamaks are more complicated than those with
circular cross sections. There are a number of problems
associated with these devices. The currents in the poloidal
field coils must be carefully programmed to obtain the
desired plasma current and configuration. Positional con-
trol problems have to be solved. An elongated plasma is
generally unstable to an axisymmetry vertical displacement.
Vacuum vessel and passive conductors are used to stabilize
fast plasma motion; an active control system is necessary to
keep plasma at the equilibrium position during the dis-
charge. To gain a good understanding of these phenomena
in tokamaks and to design devices with optimal charac-
teristics, it is necessary to have appropriate tools for the
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numerical simuilation of tokamak operation and behavior.
Several codes exist to simulate axisymmetric tokamak
plasmas in two-dimensional geometry [1-6]. One of the
most complicated and extensive of these codes is the TSC
code [6]. This code uses a considerable amount of
computer time.

The present paper describes an accurate and efficient
mode! to study toroidal plasma evolution in two-dimen-
sional geometry. In this code (named DINA), the equi-
librium probiem of a plasma with a free boundary in an
externally applied magnetic field is solved together with the
one-dimensional (averaged on magnetic surfaces) system of
transport equations. For the vacuum vessel and the passive
and active coils, the circuit equations are solved. The code
includes such effects as fueling by pellet injection and
heating by neutral beams and a-particles. The cold, neutral
particles are modelled in the plane approximation. The
effects of bootstrap and beam-driven currents are taken into
account. The main difference between this model and others
is the method that is employed for the solution of the equi-
librium problem. The “inverse variable” technique [7] is
used in the code DINA to find the coordinates of the
equilibrium magnetic sufaces. This method permits the flux
coordinates to be determined very quickiy and accurately.

II. EQUILIBRIUM AND TRANSPORT EQUATIONS

The plasma equilibrium in a magnetic field is described by
the simple system of vector equations,

1.
VP=E[J><B], (1)
4
curlB=—7—Ij, (2)
C
div B=0, (3)
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where p is the plasma pressure, B is the magnetic field, j is
the current density, and ¢ is the speed of light. In an
axisymmtric configuration, the magnetic field B can be
expressed in terms of the poloidal flux function % and the
poloidal current F as

1 2
B=— W —
T [V¥xe,]+ o Fe,, (4)

where e, is the unit vector in the toreidal direction, and
(r, z, ) are cylindrical coordinates centered on the axis of
toroidal symmetry. The first term in Eq. (4) is the poloidal
field B,, which lkies in the cross-sectional plane (7, z),
whereas the second term is the toroidal field B,. Substituting
B from Eq. (4} into Eq. (1), we have

2

1 .
Vp=m(VW},—CrFVF), (5)

where j, is the toroidal component of the current density.
Using ¥ as a variable to describe the flux surfaces, we can
write p and F as functions ¥, viz., p= p(¥), F= F{¥),
Vp=p' V¥, VF=F'V¥, where the prime denotes a
derivative with respect to ¥, From Eq. (5), the toroidal
component of the current density, 7,, can be written as

1
Jo=r2nep' +— (F?). (6)
rc

Using simple mathematical relations we obtain from
Egs. (1)-(6),

' GRS AN 4n?
e — . - e
ATE=r (r 6r)+622 ¢

or

2

A*‘P=§t—r(r27tcp’+l(F2)’), (7)
c re

which is called the Grad-Shafranov equilibrium equation.
Using the notation v = ¥/2n and f=2F/c, Eq. (7) can be
written in a more compact and convenient form:

1o, dpr 1 4df*?

rA = (4nrdw+2rddl). (8)
To solve this equation, it is necessary to specify the func-
tions p= p(y) and f= f{y), which can be found from the
transport equations and the magnetic field diffusion equa-
tion. We introduce the flux coordinate system (p, 8, @)
shown in Fig. 1, where p:ﬁ, with @ the torcidal flux,
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FIG. 1. Flux coordinate system: poloidal angle ¢, toroidal angle o,
and surface coordinate p. '

D(y) = {{s, B, dr dz, where 6 and ¢ are the poloidal and
toroidal angles, and where S, is the area enclosed by the
magnetic contour ¥ = const in the (r, z) plane.

1I1. AYERAGING TECHNIQUE

Since in tokamaks the energy and particle transport
along the magnetic surfaces is much greater than the trans-
port across the magnetic surfaces, we can assume that
densities and temperatures are constant on each magnetic
surface.

Let p be the label for the magnetic surface S; we define the
average over S of an arbitrary quantity 4 by

2 1 as
= aav=="1"t[ 4-
47 avLA v V'L“'Wpr

where

@V ¢ dS

S dp sVl
and V is the volume enclosed inside the magnetic surface S.
This average has the properties,

vH,

<divH>=a—aI;<H-VV>, (9)

d iy 2 .
E(V(A))—V(A>+dp (Au,-VV>, VA, (10)

where A is the time derivative at a fixed point (r, z), with
d/dr being the time derivative at fixed p. The vector u, is the
velocity of the constant p surface, defined by

g+u, Vp=0. (11)
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From Eq. (9}, it can be deduced that

v d
AL 7
o dp VY

(12)
Applying this averaging technique to the Braginskii trans-
port equations [8], we obtain a system of one-dimensional
transport equations with the respect to the “radial”
coordinate p.

IV. AYERAGED TRANSPORT EQUATIONS

A. Magnetic Field Diffusion Equation
The projection of Ohm’s law on the magnetic field is

i

E-B=— (13)
a

Applying ihe averaging technique to Eq. (13) we obtain

— Y- b=

d¥ . 4dn
14
dp dp O‘”l: (14)

dF FdJ]
dp  dpl

where J(p)= ({5, j dr dz is the toroidal current inside the S,
surface and ¢ is the Spitzer conductivity,

d¥ dd
J(p)=—pq <Q> ‘d_s Flp)=pu, <@> s
g 4P o

N Valods
—i = ﬁ 2+ % ’ — 2
“0_4?1_’ 8= 69 89 ’ g3 =17

and /g= —a(r, z, ©)/d(p, 0, ) is the Jacobian for the
transformation from cylindrical coordinates to flux
coordinates. The angle-average of the quantity A is

= A(B) 46
(y,=[ A

(] 21‘5.

Denoting C, = <822/\/§>0a Cy= 1/(\/§/§33>3, and using
dd/dr =0, we can write Eq. (14) as

.4 d C, d
'P+§,L¢3C§p—(—-—2~g=0.

& {(15)

B. Density Equation

The variation of the density of the jth ion species with
time is described by the equation
A+ div(imu) =S, (16)

where S, is the source term, #; is the density, and u, is the
flow velocity of the ion species. By averaging Eq. (16) over
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a magnetic surface, multiplying by V', and using Egs. (9)
and (10), we obtain

d d ,
2 ¥+ Cna—w) Vo =<Sy v (1)

Denoting the particle flux relative to a constant p surface by
I';={n;(u,—u,) Vp5, we compute Eq. (17) as

Y ,
GV )=y (18)

C. Energy Equations

If the viscosity terms are neglected, the energy balance
equation for the electrons can be written as

%pke+div(qe+%peue)=iE_Qci—“ivpi+ Qe’ (19)

where p, and p, are the electron and ion pressure, respec-
tively; q. is the electron heat flux; Q,; is the electron—ion heat
exchange; u, and u; are the electron and ion flow velocity,
respectively; and (@, is the source term., Due to plasma
ambipolarity, we have u, =u,. From Ohm’s law, namely,

u, .
cr"(E+~C—><B)=],

it can be deduced that

;2

J

u
j.E:f-(ij)‘{'?:ue'VP'i'nga (20)

where Q, = j*/o".
Using Eq. (20) and averaging Eq. (19), we obtain

e (aeinr) v
a1 A | R L

r, . d

t

—_fy—
2 (p.)

=V{(=Qu+Qu+0.0 (21)

where g, = (q,-Vp).
The energy balance equation for the ions is

2hitdivig+ipm)=0u+u,-Vp+ Q. (22)

Averaging Eq. (22) over a magnetic surface leads to
31 4 53 d 5 :
Z(V’)zﬁdf [p,(V) ]+dp qr‘+5Tr'Fr‘) V]

r, . d -
-—V Eﬁ(p")_V {Q.i+ 0,

n,

(23)

where ¢, = {q,-Vp).
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We will use simplified expressions for I';, g., and g, that
correspond to the so-called “diagonal’model. In the
diagonal model, we assume that

q.=—xn VT, =—y.nVT,,
where y; and y, are the electron and ion thermal conduc-
tivities, respectively. The particle flux of ion species j can be
written as
r.

4

=n(w—u,}=—-DVn,+nV

7t pr

(24)

where D is the diffusion coefficient and V, is the inward
pinch velocity. The averaged fluxes are given by

dar;

q;= _Xi”;'(VPz) Ee
(25)
- _Xene<sz

dp’
and

I=—D{Vp 2) "'+n(V Vp>. (26)

The coefficients D, y,, x., and ¥, are functions of the plasma
parameters and their gradients; here, j denotes either
deuterium, tritium, or hydrogen; and Q. is given by

R,
Qei=3;_(TeA Tl'}’

ite

where 7, is the collision time for electrons [8]. The energy
sources are Qﬂ = Qca - QeR + Qeaux and Qz‘ = Qi:z + Qiauxs
where 0., and (,, are the a particle heating power to eiec-
trons and ions, respectively; Q,x is the radiation power
(bremsstrahlung and cyclotron); Q... and Q,,, are the
auxiliary heating power to the electrons and ions, respec-
tively. The source terms S, take into consideration fueling
(for example, by pellet injection). The energy source term
profile 1s calculated with the help of a neutral beam injection
+ model in the thin beam approximation, with the two-dimen-
sional magnetic surface geometry taken into account. The
other heating methods are modelled parametrically in the
energy source terms.

The toroidal flux in the plasma varies with time, and thus
Pmax 18 DOt constant. The p variable is constrained to the
interval [0, p...] We define the normalized variable
£ = p/Pmax. Then the time derivative can be written as
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The Jacobian becomes \/§ = \/g(ﬁ)/pmx, and

Viip)=V{P) Prass
(P) CZ( )pmax’
(P)— ( )pmax’

{Vprr=pL, . <Vp?>,
{IVp|> = pumax <IY5] .
fp)=Cy(p) pl. pim.

D. Summary of Transport Equations

Using Eqs. (14), (17), (20), (22), (24)-(26), we obtain the
following system of transport equations:

Magnetic field diffusion,

WD ooV dn s d (G dE)
@i o di dp P B\ T dp
(28)
Balance of j particles,
dinlV’ P dpmax d d
max g, s md"__ V7
Prmax (pmax) Pmax dt dp (V) + dp(V”
=V'{8;. (29)
Energy balance for electrons,
3pind (nT V™ 3 p
2VAN o ) 2V pr
pmax_ +5/3 ;i +
S LYY 4 (VLT
v d
- n, d_ﬁ(neTE)
d . dT,
G5 T (Van <V )
= <ng+Qﬂ_Qﬂ'> VJ' (30]
Energy balance for ions,
3 pmax E (niTi V-'5/3) - 3 ﬁ
2V AN oo 2V 5o
dpmax d 1573 5d
” d_( TV )+ dp(VFT)
rvd
- = (n,T,
n dp( )
d dT,
—E ey pevsiy 2L
dﬁ(Vx.M p>d‘5)
={0;+ Q.o V',

(31}
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where I (p)=—D{Vp*> dnjdp+n(V,Vpl), T.=
> I n.=Y,nz,+n,z,, n, is the density of « particles,
and z, is the charge of the jth particle species.

V. NUMERICAL SOLUTION OF THE MODEL

Equations (28)-(31) form a system of second-order,
quasilinear, parabolic equations. In solving these equations
we use an implicit scheme with iteration in the non-
linearities. The equilibrium, Eq. (8), is solved by the inverse
variable technique with the use of the POLAR code [7].
The Polar code uses as input parameters the profiles for 4
and pressure and poloidal flux derivatives, p” and y’, respec-
tively. The profiles of dp(p)/dp, d'¥(p)/dp, and g(p), which
are used in the equilibrium problem, are obtained from the
solution of the transport equations.

From the solution of the equilibrium equation we obtain
the coordinates r{p, 8} and z{p, f} of the magnetic surfaces.
By averaging over the magnetic surfaces, we obtain the
metric coefficients C,(5), Cs(5), {Vp*>, {|Vp|>, and V.
The value g, is calculated with Eq. (27). Then the trans-
port equations are solved with these coefficients. We obtain
the profiles dp/dp, d¥/dp, and g(p) for the next time step.
With these parameters, a new equilibrium is calculated.
Since the metric coefficients depend on time, several itera-
tions are carried out, so that more exact profiles of dp/dp,
d¥/dp, and ¢(5) and the magnetic surface coordinates are
obtained. A schematic flow-diagram of the various calcula-
tions is shown in the Appendix. When the separatrix surface
gets close to the plasma boundary the more fine radial and
poloidal mesh is used to obtain a better determination of the
x-point.

For the case of an external magnetic field with a free
boundary plasma, the principle of “virtual casing” [9] is
used to find the flux and the magnetic field produced by the
plasma current. The virtual casing principle used in the code
consists of replacing the plasma poloidal flux produced by
volume currents with the flux produced by surface currents.
In the case of a vertically unstable plasma, an artificial
radial magnetic field is used to obtain an initial equilibrium.

A. Boundary Conditions

For the densities and energies, it is appropriate to use
either mixed boundary conditions

d
aé+ﬁ;§_~=vlp=1, (32)

where a, f§, and y are doefficients and ¢ successively denotes
n;, T;, and T,; or Dirichlet boundary conditions, where the
values 1}, T7, and T are specified on the plasma boundary.
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The boundary condition for the magnetic fieid diffusion
equation is

L N L 33
e dt ¢ dr’ (33)

where ¥, is ¥ on the plasma boundary; ¥, is the plasma
current flux; and ¥ denotes the total poloidal flux
produced by the poloidal field currents and by the eddy
currents induced in the vacuum vessel and in the axisym-
metric conductors.

We define the plasma self-inductance by the equation

L,=%¥,/I,, where [, is the total plasma current. We can
write Eq. (33) as
d¥, d¥ d
— = — (L X 34
dt dr +dt( plo) (34)

Using an implicit scheme for the discretization of Eq. (34),
we obtain

W, ¥, _ - ygrext N (L, —L,1,)

T T T

(35)

where the caret denotes values {rom the previous time-step.
Using the relation {,,= —p,C, d¥/dp|; ., we can write

d¥

toC T b+ V=P, + P —L 1, (36)

Equation (36) constitutes the mixed boundary condition for
the ¥ equation.

B. Transport Coefficients

Since the radial dependence of the electron thermal
conductivity is not presently known, we use the simple form
for y,,

1e=B(1+3p7),

where 8 and § are adjustable coefficients. The value of ¢ is
chosen to define a wide or narrow temperature profile, and
the value of # is calculated at each time-step so that we
obtain a global energy confinement time identical to the
assumed scaling law (e.g., Kay-Goldston, Alcator).

The thermal conductivity y; of the ions is either assumed
to be neoclassical [10] or considered to be equal to the
electron thermal conductivity. We assume that the particle
diffusion coefficient is proportional to the electron thermal
conductivity D ~ 0.2y, and that the inward pinch velocity is
given by ¥, =k, Dp/a, where a is the plasma minor radius
and &, is chosen to obtain the required density profile.



198

A fusion reactor that operates in a continuous regime is
supposed to use nonindyctive methods for maintaining the
plasma current constant. In a high temperature plasma, the
value of the bootstrap current can be significant. Therefore
we include in our model the neoclassical bootstrap current
and the beam-driven current effects. After inclusion of
driven and bootstrap currents, the magnetic diffusion
equation is modified as

dF !
1 —FE )+ aB L )

— Y- —@=
7 ap dg

dg¢ . d¥ . 4=n

dp dp v (
where 0 =06"—ac¢”; o is the neoclassical trapping term
[10]; and <] ‘B = <j'B>b00[ + - B)beam’ where
{j Blhoor and {j-B)>,.... are the bootstrap and beam-
driven terms, respectiveiy.

C. The Circuit Equations

In a solid conductor, we can write Ohm’s law in the
simple form

Ji=0E,

where E, is the toroidal component of the electric field. In
the ith element of a conductor, i.e., with coordinates (r;, z;),
we have Ei= -, + V. /2nr, where V¥, is the voltage
applied to the ith circuit. From Ohm’s law we obtain

2nr, J;

7!I)'i+Vi: (38)

i

If we assume that the current density j, is homogeneous
in the area S, of the conductor, then Eq. (38) can be
re-expressed as

~¥,+V,=RI, (39)
where R; =2xr;/o,S, is the resistivity of the element §;.

The poloidal flux ¥, on each ith element is determined by
the sum

L+ vy

ity pi?

Y.=LI+Y M

J#i

(40)

where M ; is the mutual inductance between the ith and jth
elements (proportional to the Green’s function for the ellip-
tic operator 4*); L, is the self-inductance of the ith element;
and ¥, is the flux created by the plasma current in the ith
element. Using Eq. (39) and Eq. (38), we obtain the circuit
equation

d )
— (L,-I,-+ S ML+ *P;,,) +R 1=V, (41)

dt iwi
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FIG. 2. Poloidalfield coil system of the T3-M tokamak. Coils 1, 2, and
4 are inductor coils, coil 6 is the vertical field coil, coils 3 and 5 are contro!
coils, and coils 7 and 8 are fast control coils.

Note that in the case of a vacuum vessel and passive coils,
the value V,1is equal to zero.

In conventional tokamaks, four types of poloidal field
coils exist:

« Current ramp-up and Ohmic heating coils,
« Vertical field coils,

» Shaping coils, and

+ Plasma position control coils.

V1. APPLICATION TO THE T-3M TOKAMAK

As an illustration of the application of this numerical
scheme, we present here a simulation of the operation in the
T-3M tokamak. In this machine the plasma evolves from
the limiter regime to the divertor regime. The plasma
configuration has two X-points inside the vacuum vessel.

The T-3M poloidal field coil system is shown in Fig. 2.

30

ZICM]
-0 -10 Q 10

-30

FIG. 3.

Initial state of the plasma magnetic surfaces.
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FIG. 4. Time evolution of the coil currents in the [irst scenario. FIG. 6. Plasma current profiles at various times (second scenario):

(1)e=0,7,=200kA; (2) r="5ms, [,=135kA;(3) 1=10ms, [,=95kA.

Coils 1, 2, and 4 are inductor coils, and coils 3 and 5 are ver-
tical field coils. In the flat-top regime the plasma current is

1,=200kA and the current in the inductor is fnq= I[kA]
-0.17,= —20kA.
We present the results of two operational scenarios. In the 30.
first scenario, the plasma current remains approximately 1,
constant. In the second scenario, the plasma current
decreases from 1,=200 to 95kA. The time for the 20.
]
2t 10.
&1
] 0
Z
ol I
_ ] I
8o R{CM] -10.
— 1860
N Iy
el
] ~20.
&1
1
]
g1 -30. 4
i 0. 2. 4. 6. 8. 10,
time [ms]

FIG. 5. Final state of the plasma magnetic surfaces (first scenario). FIG. 7. Time evolution of the coil currents in the second scenario.
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9o

a. 2. 4. 5. 8.
TIME [ms]

1Q.

FIG. 8. Evolution of the safety factor at the plasma edge.

transition to the divertor configuration is 10 ms. The initial
plasma shape and magnetic surface contours when the
plasma is limited by the vessel are presented in Fig 3. To
create the divertor configuration, the current in coil 4 is
changed from negative to positive. The plasma current [,
decreases during this process (second scenario). To com-
pensate the poloidal flux change at the plasma boundary
and to maintain the plasma current constant, we induce a
negative current in coil 9. This leads to the first scenario. In

RICM]

FIG. 9. Final state of the plasma magnetic surfaces (second scenario).
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TABLE I

Plasma Parameters

First Second
Parameter Initial  scenario  scenario
Plasma current, kA 200 195.0 95.0
Plasma elongation . L4 21 1.3
Minor radius, cm 200 120 10.0
Major radius, cm 106.0 106.0 106.0
Safety factor on plasma axis 1.1 1.2 1.3
q at the plasma edge 45 29 35
Current density on axis, kAfem? 0.35 0.42 0.36
Electron temperature on axis, eV 580.0 7300 650.0
Ion temperature on axis, eV 500.0 550.0 5300
Average plasma density, 10'3/cm? 4.5 6.1 6.8
Toroidal field on axis, T 3.0 30 30
Internal inductance 1.06 0.61 095

the first scenario the temperature, current, and density
profiles remain monotonic. In coil 4 the current changes
from —20 to +30kA, and in coil 9 we have to induce a
current of —30 kA. The time evolution of the currents and
the flux-surface contours in the final state are shown in
Figs.4 and 5, respectively. In the second scenario, the
density and temperature profiles remain monotonic, but the
current becomes peaked during the plasma current delay.
The current profiles at three different times are plotted in
Fig. 6. The current evolation in the ¢oils and the behaviour
of the safety factor, g,, at the plasma edge are illustrated in
Figs. 7 and 8§, respectively. It is seen that, when the plasma
detaches from the vessel, the value of ¢, increases; however,
when plasma becomes limited by the separatrix, the value of
g, decreases. The plasma shape at the final state is shown in
Fig. 9. The initial and final plasma parameters are shown in
Table L.

The numerical simulation of a single scenario requires
about 30 min on 2 VAX computer. The time step used here
was 0.1 ms. The plasma mesh contained 24 radial and 66
angle points.

VII. SUMMARY

We have described a 14D code (DINA) for the simuta-
tion of the evolution of frec-boundary toroidal plasmas in
time-dependent external magnetic fields. Using this code we
are able to simulate plasma motion, including the effects of
eddy currents in the vacuum vessel, poloidal field coils, and
axisymmetric conductors. We can study the behaviour of
the plasma, which is unstable in the vertical and horizontal
directions, and simulate the control of the plasma position
using an active feedback control system. This code is faster
and simpler than other 13D codes, and it permits the
simulation of all the main characteristics of tokamak
plasmas.
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